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Abstract: The interest for efficient methods for aerodynamic design is expressed by a better use of the 
panel method applications, based on the property that no volumetric grid is require. In this case, only the 
bounding surface should be discretized. This paper deals with the Maple soft applications for numerical 
panel method for incompressible flows. Based on this powerful mathematical computation tools, several 
numerical solutions were obtained for different body shapes, in a simple but intuitive manner. 
  
Keywords: the panel method, boundary elements, Maple soft applications, flow simulation.  
 
 

1. INTRODUCTION 
 

Despite advances in the development of 
sophisticated grid generation techniques and 
compressible flow modeling methods, 
analyses based on incompressible and inviscid 
potential flow assumptions continue to remain 
a very good technique for aerodynamic 
computation.  

Compared to the generation of a good 
quality volumetric grid, construction of a 
surface mesh for a complex geometry is a 
simpler problem especially since the required 
geometric information is often already 
available in the form of CAD files and 
efficient grid generation techniques for curved 
surfaces have been developed.  

The incompressible potential flow model 
provides reliable flowfield predictions over a 
wide range of conditions. For the potential 
flow assumption to be valid for aerodynamics 
calculations, the primary requirement is that 
viscous effects are small in the flowfield, and 
that the flowfield must be subsonic 
everywhere. If the local flow is at such a low 
speed everywhere that it can be assumed 
incompressible, Laplace’s Equation is an exact 
representation of the inviscid flow.  For higher 
subsonic mach numbers with small 
disturbances to the freestream flow, the 
Prandtl-Glauert Equation can be used and 
converted to Laplace’s Equation by a simple 

transformation. This provides the basis for 
estimating the initial effects of compressibility 
on the flowfield, namely liniearized subsonic 
flow. In both cases, the flowfield can be found 
by the solution of a single linear partial 
differential equation. One of the key features 
of Laplace’s Equation is the property that 
allows the equation governing the flowfield to 
be converted from 3D problem throughout the 
field a 2D problem for finding the potential on 
the surface.  

The solution is then found using this 
property by distributing singularities of 
unknown strength over discredited portions of 
the surface: panels. Hence the flowfield 
solution is found by representing the surface 
by a number of panels and solving a linear set 
of algebraic equations to determine the 
unknown strengths of the singularities. 

 
2. PROBLEM FORMULATION 

 
The equation for the potential is the 

following 
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where  is the free stream velocity, ∞V α  the 

angle of attack and . ( )x/ytan 1−=θ
The numbering system starts at the lower 

surface trailing edge and proceeds forward, 
around the leading edge and aft to upper 
surface trailing edge, so N + 1 points define N 
panels. The approach is to break up the surface 
into straight line segments, assume the source 
strength  is constant over each line 
segment (panel), but with different value for 
each panel, 

( )sq

( ) N......2,1j,qsq j == , and the 
vortex strength  is constant and equal over 
each panel.  

γ

Most airfoils are not described by 
equations but are defined by a table of 
coordinates. Frequently, these coordinates are 
the results of a computational aerodynamic 
design program, and simple algebraic formulas 
can not be used to define the shape. The 
representation of a smooth surface by a series 
of line segments is presented in Fig. 1.  

 

 
 

Fig. 1 Representation of nodes 
 

If the  panel is between the  and 
 nodes and the  panel’s inclination to 

the x axix is  (Fig. 2), then the sin and cos 
of  are given by 
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Fig. 2 Nomenclature for coordinate system 
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and the normal and tangential unit vectors are 
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The unknowns have to satisfy the flow 
tangency condition on each panel at one 
specific control point and the solution has to 
satisfy the Kutta condition. The control point 
is the mid-point of each panel as shown in   
Fig. 3. 

 

 
 

Fig. 3 Control point representation 
 

The coordinates of the control point are 
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and the velocity components at the         
control point ( )ii y,x  are ( iii y,xuu = )  and 

( )iii y,xvv = . 
The flow tangency boundary condition is 

given by 0nV =⋅
rr

, 

( ) ( ) 0jcosisinjviu iiii =θ+θ−⋅+
rrrr

          (5) 

or 
0cosvsinu iiii =θ+θ−   

for each i, .N,...,2,1i =  
The remaining relation is found from the 

Kutta condition. This condition states that the 
flow must leave the trailing edge smoothly. 
Because of the importance of the Kutta 
condition in determining the flow, the solution 
is extremely sensitive to the flow details at the 
trailing edge, and for this reason the last panels 
on the top and bottom are small and of equal 
length.  

The trailing edge panel nomenclature is 
presented in Fig. 4. 
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Fig. 4 Trailing edge 
 

Also, the magnitude of the tangential 
velocities on the upper and lower surface is 
equal 

tN1t uu −=  
or 

N1
tVtV ⋅−=⋅

rr
             (6) 

Carrying out the operation one gets the 
relation 
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which is expanded to obtain the final relation: 
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The expression for the potential in terms of 
the singularities on each panel and the 
boundary conditions derived above for the 
flow tangency and Kutta condition are used to 
construct a system of linear algebraic 
equations for the strengths of the sources and 
the vortex. The velocity components at any 
point i are given by contributions from the 
velocities induced by the source and vortex 
distributions over each panel, 
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where  and  are the singularity strengths 
and the  and  are the 
influence coefficients (for instance, the 
influence coefficient  is the x-component 
of velocity at  due to a unit source 

distribution over the  panel).  

iq γ

vijsijsij u,v,u vijv

siju

ix
thj

In order to find  and        
it is necessary to work in a local panel 
coordinate system 

vijsijsij u,v,u vijv

( )pp y,x  which leads to a 
straightforward means of integrating source 
and vortex distributions along a straight line 
segment. The system is locally aligned with 
each panel j, and is connected to the global 
coordinate system, like in Fig. 5. 

 

 
Fig. 5 Local panel nomenclature 

 
The influence coefficients determined in 

the local coordinate system aligned with a 
particular panel are  and  and are 
transformed back to the global coordinate 
system by 
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The velocity field induced by a source in 
its Cartesian coordinates (taking into account 
that the source is located at the origin 0, r = ) 
is 

( )

( )
⎪⎩ +π 22 yx2
If the source is located along the x-axis at a 

point 
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tx = , the velocities induced by the 
source distributions are  
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= +−ππ 0t
22s

ytx22
To obtain the influence coefficients, one 

can write su  and sv  in the local panel 
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coordinate system with  (unit source 
strength):  

( ) 1tq =
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where ijr  is the distance from the thj  node to 
the point i, which is taken to be the cont
point location of the thi  panel. The angle 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

π
−= +

r
r

ln
2
1u

sij

ij

1j,i
sij

p

          (13) 

rol 

ijβ  

is the angle subtended at the mi
 panel (Fig. 6).  

ddle of the thi  
panel by the thj

 
 

Fig. 6 Angles and radius 
 

al velocities and 
no tangential velocities. Thus, ( ) 0u p

sii =  and 
( )p
siiv  depends on the side from which the panel 

 point is approached. Approaching the 
panel co int
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tside lead

π=βii , while approaching from the inside 
leads to π−=βii .  

Based on the same analysis used for the 
source singularities one can get the formulas 
for the influence coefficients due to the vortex 
distribution 
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where the definitions and special 
circumstances described for the source 
singularities are the same in the current case of 
distributed vortices. In this case th
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dis
sheet and no normal velocity.  

In order to get a system of equations of the 
form 

 

tribution induces an axial velocity on itself 
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which are solved for un
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flow tangency conditions 
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for each i, i = 1, 2,…, N, where the velocities 
are given by: 
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Taking into account formulas for 
 one can get the system 
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 The final equations associated with the 
Kutta condition are 
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required coefficients to solve a system of 
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linear algebraic equations for N + 1 unknowns 
 and 

⎪
⎪

⎨

⎧
==γ+

+

=
+

∑

∑

1N

N

N

1j
i1N,ijij N,...,2,1ibAqA

      (18) 

At each control point,  and the 
tangential velocity is 

iq , N,...,2,1i = γ , 
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3. MAPLE SOLUTION 

 
Maple provides an interactive environment 

for solving symbolic, numeric and graphical 
mputations. A simple way ve the 

system of equations for iq , i = 1, 2,…, N and 
γ , is to build a procedure proc ( )α∞ ,V  which 
gives the results for the inputs: free stream 
velocity ∞V and angle of attack α . After 
declaring the local and global variables one 
can choose the number of panels, N and write 
the coordinates of nodes i, where i = 1, 2,…,  
N + 1. The ma nd 

c ing 

 1)])  
  

 

With the pac
 the equation 

   
 

trix M of coefficients ijA  a
ve tor B of ib , are written in the follow
form: 

 

M := Matrix([seq(L[i], I = 1…N +
 

where
 

L[i] := [seq(A[i,j], j = 1…N + 1) 
 

And 
 

B := Vector([seq(b[i], I = 1…N + 1)]). 
kage LinearSolve one can get the 

solution of
 

BxA =⋅          (20) 

namely,   
 

],q.....,q,q[x N21 γ=           (21) 
and after that, the tangential velocity at 
eac

n th
 (Fig. 7) and some results 

for (Fig. 8, Mach number 0.2, Fig. 9, 
Mach number 0.4). 

itu
h control point and the pressure coefficient 

ipC . 
I e following figures are presented the 

NACA 4415 airfoil

ipC

 
Fig. 7 Airfoil coordinates 

 

 
 

Fig. 8 Pressure coefficient 
 

 
 

Fig. 9 Pressure coefficient 
 

Also, a very simple way to solve the 
system of equations for the numerical source 
panel method (analyzed very well in the 
Fundamentals of Aerodynamics – fourth 
edition by John D. Anderson Jr.) is allowed by 
Maple soft.  
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For the flow around the circular cylinder, 
the equation for the source panel strengths 

 is: N21 ,...,, λλλ
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y tangent to the surface at each 
control point can be calculated as a sum of the 
contribution from the freestream and from he 
source panels, 
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where iβ  is the angle between ∞V  and normal 
vector to the panel i. 

In Fig. 10 are presented the control points 
(1, 2,..., 12) for source panel distribution 
around a circular cylinder. 

 

 
 

Fig. 10 Control points representation 
 

Results for the pressure coefficients 
obtained from Maple calculation (red points in 
Fig. 11) are compared with the exact analytical 
result (black line). The numerical pressure 
coefficient result is placed on the analytical 
line, that is the maple calculation is right. 

 

 
 

Fig. 11 Numerical and analytical results 
 

4. CONCLUSIONS 
 

The linear nature of the potential flow 
allows the principle of superposition in     
order to construct solutions to problems of 
interest by summing simpler solutions. Flows 
due to sources, doublets and vortices are    
the elementary building blocks out of    
which general solutions are constructed. 
Conventional computational fluid dynamics 
(CFD) methods require calculation for the 
entire three-dimensional field about the  
body, whi

6. 

  
   

  
le the panel method also can 

cal

fficient tool capable to solve 
different types of problems and to explore 
ma ls for computational 
aerodynamics.  

 1990; 

3.  Linear Potential Schemes, 

4. J., Plotkin, A., Low-Speed 

of Ideal-Fluid 

 13 documentation; 

culate the entire three-dimensional field but 
it requires only calculation over the surface of 
the body.  

One major computational task in a panel 
method is to obtain the matrices of panel 
influences at each others’ control points. The 
key formulas are obtained by integrating over 
a panel the point source and doublet formulas 
weighted by the proper polynomial variations. 
These integrations, which express the panel 
influences at a general field point in space, 
may be performed analytically over a plane 
panel to obtain exact closed form expressions, 
which however are rather complicated. Maple 
software is an e

thematical mode
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